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THE RELATIONSHIP BETWEEN THE FORCE 
CONSTANT AND THE ELECTRIC 

FIELD GRADIENTS 

It has been shown30 that the Hellman-Feynman 
theorem leads to the following relationship 

AA = k/ZA-qA = (47r/3)pCA)- / dp/dXA cos<9A/r2Adr. 

Here k is the force constant, qA is the electric field 
30 L. Salem, J. Chem. Phys. 38, 1227 (1963). 

I. INTRODUCTION 

THERE has been some recent experimental interest 
in the process of single-quantum annihilation of 

positrons.1 In a one-photon process recoil momentum 
must be taken up by a nucleus, so that annihilation is 
more probable in the K shell than in outer atomic shells. 
The i£-shell annihilation cross section is known numeri
cally for lead, Z=82, from the computation of Jaeger 
and Hulme2; and analytically for arbitrary Z from the 
Born approximation.3 

The Born-approximation formula, Eq. (20), shows 
that the cross section is proportional to Z5; annihilation 
is therefore more probable for heavy elements than for 
light. For elements with Z greater than 70 the Born 
parameter aZ is greater than \ and the Born approxima
tion is certainly not reliable. 

Because of the need for accurate cross sections for 
elements other than lead it was decided to formulate 
the problem in such a way that a detailed numerical 
analysis would be simple. 

In Sec. II we explain how the single-photon cross sec
tion is reduced to a sum of partial-wave cross sections 
corresponding to an angular momentum decomposition 

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

1 L . Sodickson, W. Bowman, J. Stephenson, and R. Weinstein, 
Phys. Rev. 124, 1851 (1961). 

2 J. C. Jaeger and H. R. Hulme, Proc. Cambridge Phil. Soc. 32, 
158 (1936). 

3 H. J. Bhabha and H. R. Hulme, Proc. Roy. Soc. (London) 
A146, 723 (1934). 

gradient at nucleus A, p(A) is the electron density at 
nucleus A and XA is the nuclear position coordinate. 
We find from our computed values of qA and p(A) at 
R=3.0a0 that ALi=+0.063a0-3 and AH=+0.0043a(r3. 

It can be shown30 that AA = 0 if the charge distribution 
around A is spherical and if it follows the motion of A. 
Inspection of the LiH wave function shows that these 
conditions are not met and that small value of AH is due 
to a fortuitous cancellation of p(A) and J*(dp/dXA) 
X (cosdA/r2)dr. When qA is negative as for lithium, the 
cancellation clearly cannot occur. 

of the incident positron wave function. The radial inte
grals occurring in the partial-wave cross sections are 
reduced to sums of hypergeometric functions in Sec. III. 
The results of the numerical analysis, together wTith a 
discussion of various limiting cases, are presented in 
Sec. IV. 

The numerical results are in precise agreement with 
the Born approximation as Z —-> 0, and agree approxi
mately, but not in detail, with the results of Jaeger 
and Hulme for Z= 82. 

II. REDUCTION OF THE CROSS SECTION 

The cross section for single-quantum annihilation is 
given by 

<?= / <Klk £ \M\2, (1) 
47T p J r.e.ju 

where the matrix element M is 

M = —i / dsr(v^(r)a- eu^t))*-*". (2) 

In the above we denote the energy-momentum vectors 
of the positron and photon by ($,iW) and (k,ico); and 
the photon polarization vector by e. The electron bind
ing energy is given by myi, where m is the electron mass 
and 7i=(l—a2Z2)112. We use ^(r) and «M(r) for the 
Coulomb field Dirac wave functions of a positron with 
spin f, and a K shell electron with magnetic quantum 
number ju, respectively. 
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«M(0 = M = ± i - (3) 

(4) 

The i£-shell Coulomb wave function is given by4 

^g_i(\r)0_iM(VV 

V /-i(Xr)Q lM(>) < 

The radial functions g_i and /_i are 

g_1(Xr) = A T [ ( l+7i) /2] 1 / 2 (2 \ r )^- 1 e-^ 

/_1(Xr) = ^ [ ( l - 7 i ) / 2 ] 1 / 2 ( 2 X f ) ^ - 1 e - ^ , 

where \=tnaZ, and 7V=[(2X) 3 / r (27i+l) ] 1 / 2 . The 
angular dependence in Eq. (3) is expressed by spherical 
spinors5 

M > ) = £ x C(/ , i , i ; /z-X, X)XxF^_x(r) , (5) 

in which X\ are Pauli spinors, C(h,hl) m^m^) are 
Clebsch-Gordan coefficients, Yim(f) are spherical har
monics, and in which #c= = F(j+i) for j = / ± | . 

The positron Coulomb wave function, which is chosen 
to represent asymptotically a distorted plane wave with 
an outgoing spherical wave, is 

V(r) = 47T E P«m*($,?)<JMSUr»f(f), 
Ki,mi 

kn(pr)^Kimi
f(r)), (6) 

In Eq. (6) the radial functions fK and gK are 

/W+m\1/2 

£ , ( * ? ) = — ( ) g<7«-/2-FT/2 

r ( 7 - & ) 

with 

{ }±=(y-ip)F(y+l-iv;2y+l;2ipr) 

di{K-ivf)F{y-iv\ 2 7 + I ; 2i#r), (8) 

7 =(&2„ a 2 Z 2) i / 2 j * = |K | , v=aZW/p, v'^aZm/p. 

With the aid of the above representations for the 
electron and positron wave functions one is able to 
reduce the matrix element in Eq. (2) to products of 
radial integrals and angular coefficients obtained by 
integrating products of three spherical harmonics. One 
obtains 

Kim\lm 

/\\^Kimilmn^Kil &K\m\lm)i.JK\l) • \y) 

The summation indices I and m are associated with the 
angular decomposition of the photon wave function. 
The radial integrals / and / occurring in Eq. (9) are 
given by 

/«!i=i~ l j dr rsUi(M)fn(pr)ji(kr) , 
Jo 

(10) 

J«i = i-l[ 
Jo 

dr r^Mg^p^jiikr). 

(7) 

X-
r(27+i) 

fx(pr) = il 1 ^ T W 2 - » W 2 
\ 2W / 

{IprY -e~ 

T(y-iv) 
X (2pr)^~1{ }+€-***, 

r(2T+i) 

The angular coupling coefficients are 

AKimilm^ (3/4*y'K2[W])C(l9l,h'; 0,0) 

XL/ lfW(i,i,ji,ktif)w(i,W;h,i) 
X ( - l ) m C ( Z , / J i ; - w , mi+m) 

X C ( i , l , / ; / * , w i + w - M ) , (11) 

ftimii«^=s=(3/4ir)1/2^1i(-l)
mC(/,4,ji; —w, nti+m) 

X C ( | , 1 , | ; M , mi+m—M). 

I n E q s . (11) b l = ( 2 i + l ) 1 / 2 , / i , = 2 i i - - / i , a i i d ^ ( a M i ; 
e,/) is a Racah coefficient. 

Squaring the matrix element M", summing over ju, C, £, 
and integrating over photon angles one obtains with 
some algebra a remarkably simple expression for the 
cross section: 

WOO oo 

cr=16*a £ * { | / ^ | 2 + | / _ * , * _ i | 2 

p &=i 

+ [ l / ( 2 * - l ) ] [ ( * / * , * + ( f t - l ^ 

+ [ 1 / ( 2 * - 1 ) 2 ] [ ( 2 * 2 - 1 ) | Ihih!
 2 +2*(*~1) | / * , f c _ 2 1 * - ( * - l ) ( / ^ J ^ _ 2 * + c . c . ) ] 

+ [1 / (2*+1) 2 ] [2*(*+1) | /_*.*+!12+ (2*2-1) | / ^ ^ 1 2 + {k+ i)(l^ih_^l^kM 1 *+c .c . ) ]} . (12) 

The summation index * in Eq. (12) is related to the positron angular momentum by k=ji+i. As the positron 
energy increases one thus expects more and more terms in the sum to contribute. This decomposition is therefore 
most suitable for studying low-energy annihilation processes. 

[ M. E. Rose, Relathistic Electron Theory (John Wiley & Sons, Inc., New York, 1961), p. 177. 
5 M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957), Chap. III . 
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III. ANALYSIS OF THE RADIAL INTEGRALS 

The evaluation of the radial integrals occurring in Eq. (11) requires the integral 

# = J dr r\2\r)y^l{2pr)^e~^^rji(kr)F(a', b; lipr). (13) 
Jo 

A technique similar to that used by Jaeger and Hulme6 in the study of internal conversion coefficients is used here. 
We introduce an integral representation for the confluent hypergeometric function and use the asymptotic series 
for the spherical Bessel function to find 

T(b) r1 r l (-l,m)(l+l,m) r 
K= / duu^il-u)*-*-1] il E im+1 / dr r2{2\ry^l{2pr)y~\2kr)~m-1 

T(b-a)T(a)Jo L «-o (Lm) J0 

Xexp(—\r—ipr—-ikr-{-2ipru)-\-i~~l(k —> — k) (14) 

The r integral is written as a gamma function and the remaining parametric integral is expressed as a hypergeo
metric function. The radial integrals IKi then reduce to 

r ( 7 - w ) r ( 7 + 7 i ) * ( - / , w ) ( / + l , * » ) 1 
hl=Fl xy £ 

T(2y+1) m=o (l ,w)(l—7i—7, m) ym 

X J Z(y—iv)F(yi+y—tnf y+l — iv; 2 7 + 1 ; x)+(ic—iv')F(yi+y—m, y—iv\ 2 Y + 1 ; x)] 

/p+k—i\\y+yi-™ 
+ ^ T ( n + r - M ) ( ) [ ( 7 _ z v ) F * ( 7 l + 7 - w , y-iv\ 2 7 + l ; x) 

\p+k+i\J 

+ (K-i/)F*(y1+y-m,y+l-ip;2y+l;x)yt . (15) 

The integrals JKi are obtained from Eq. (15) by replacing Fj by iFj and changing {n—ivf) to — (n—iv). In Eq. (15) 

Fx= - A r [ ( l - 7 i ) / 2 ] 1 / 2 [ ( ^ - myiWjKe-w^'Wr-iy/Spk2, 

Fj= -N[{l+yl)/2j/2[(W+m)/2Wjl2e^^ , (16) 
and 

x=2p/(p+k-ik), y=2k/(p+k~i\), z=2\/(p+k-i\). 

To avoid repetitive evaluation of the hypergeometric functions we have generated only F(yi-\-y—k — l, y—iv; 
2 7 + l ; # ) and F(yi~{-y—k—l, y-\-l — iv; 2 7 + I ; x) from the series, and determined the other F's relevant to a 
given value of k by use of the contiguous relations 

dF(d+l, a;b;x) = (d~-a)F(d,a; b; x)+aF(d, a+1; b; x), 

d(l-x)F(d+l, a+\\b\ x) = (b-a-l)F(d,a', b; x) + (d+l+a-b)F(d, a+1; b; x). (17) 

This procedure materially reduces the computing time necessary. 

IV. NUMERICAL RESULTS AND CONCLUSIONS An interesting check on the formalism occurs for the 
The sum in Eq. (12) was evaluated on the Univac fictitious case of a plane-wave positron incident on a 

1107 computer at Notre Dame for various values of Sommerfeld-Maue bound-state electron. The radial 
charge, and as a function of energy from threshold to integrals for this case are 
1.75 MeV. The accuracy of the computation was main- j — j —AJ(I /*\n '(\ !R\ 
tained at better than 0 .1% throughout the range of Ji,i-J-i-i,i-^i{M/p)UiWP), 
charge and energy. Results of the calculation are shown It i=Il+2,i=N'1(lQi(l/^) — (m/p)Qi(l/P)), (18) 

in Fig, l a n d in Table IJ / _ i + 1 , = / _ f _ M = ^ ( - ( / + l ) e , ( l / / 3 ) + ( ^ ) 0 / ( l / / 3 ) ) , 
6 J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. (London) A138, 

708 (1935). 
7 A FORTRAN iv program to compute the cross section for arbi- wi th 

trary Z and W is available upon request from the Notre Dame ,. „. . «„xr- ,w „ , „-,. ,rt 
Computing Center. tfi = i(\i'i/2mpik)Z{W-m)/2Wj'K 
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TABLE I. Annihilation cross sections <r(W,Z) in barns for the 
energies and charge numbers shown. 2.5i 

W/m 

1.0000 
1.0625 
1.1250 
1.1875 
1.2500 
1.3125 
1.3750 
1.4375 
1.5000 
1.5625 
1.6250 
1.6875 
1.7500 
1.8125 
1.8750 
1.9375 
2.0000 
2.0625 
2.1250 
2.1875 
2.2500 
2.3125 
2.3750 
2.4375 
2.5000 
2.5625 
2.6250 
2.6875 
2.7500 
2.8125 
2.8750 
2.9375 
3.0000 
3.0625 
3.1250 
3.1875 
3.2500 
3.3125 
3.3750 
3.4375 
3.5000 

47 

"o.oooo 
0.0114 
0.0298 
0.0401 
0.0450 
0.0472 
0.0478 
0.0477 
0.0472 
0.0466 
0.0458 
0.0450 
0.0442 
0.0435 
0.0428 
0.0421 
0.0415 
0.0409 
0.0403 
0.0397 
0.0392 
0.0387 
0.0382 
0.0378 
0.0373 
0.0369 
0.0364 
0.0360 
0.0356 
0.0352 
0.0348 
0.0344 
0.0340 
0.0336 
0.0332 
0.0328 
0.0324 
0.0320 
0.0317 
0.0313 
0.0309 

73 

0.0000 
0.0194 
0.123 
0.235 
0.315 
0.365 
0.392 
0.404 
0.407 
0.403 
0.396 
0.387 
0.376 
0.366 
0.355 
0.344 
0.334 
0.325 
0.315 
0.307 
0.299 
0.291 
0.284 
0.277 
0.271 
0.264 
0.259 
0.253 
0.248 
0.243 
0.238 
0.234 
0.229 
0.225 
0.221 
0.217 
0.213 
0.209 
0.206 
0.202 
0.199 

74 

0.0000 
0.0193 
0.127 
0.246 
0.333 
0.387 
0.417 
0.431 
0.435 
0.413 
0.424 
0.414 
0.403 
0.391 
0.380 
0.368 
0.357 
0.347 
0.337 
0.328 
0.319 
0.311 
0.303 
0.296 
0.289 
0.282 
0.276 
0.270 
0.264 
0.259 
0.254 
0.249 
0.244 
0.239 
0.235 
0.231 
0.227 
0.223 
0.219 
0.215 
0.211 

78 

0.0000 
0.0188 
0.143 
0.292 
0.408 
0.485 
0.530 
0.552 
0.560 
0.558 
0.550 
0.538 
0.524 
0.509 
0.494 
0.479 
0.465 
0.451 
0.438 
0.425 
0.413 
0.402 
0.391 
0.381 
0.372 
0.363 
0.354 
0.346 
0.338 
0.331 
0.324 
0.318 
0.311 
0.305 
0.299 
0.293 
0.288 
0.283 
0.277 
0.272 
0.268 

79 

0.0000 
0.0186 
0.146 
0.304 
0.429 
0.511 
0.561 
0.586 
0.595 
0.594 
0.585 
0.573 
0.559 
0.543 
0.527 
0.511 
0.495 
0.480 
0.466 
0.453 
0.440 
0.428 
0.416 
0.405 
0.395 
0.386 
0.376 
0.368 
0.360 
0.352 
0.344 
0.337 
0.330 
0.324 
0.317 
0.311 
0.305 
0.300 
0.294 
0.289 
0.283 

82 

0.0000 
0.0180 
0.157 
0.341 
0.492 
0.597 
0.661 
0.696 
0.710 
0.711 
0.703 
0.690 
0.673 
0.655 
0.636 
0.616 
0.597 
0.579 
0.562 
0.545 
0.529 
0.514 
0.500 
0.487 
0.474 
0.462 
0.451 
0.440 
0.430 
0.420 
0.411 
0.402 
0.393 
0.385 
0.377 
0.370 
0.363 
0.356 
0.349 
0.342 
0.336 

90 

0.0000 
0.0155 
0.180 
0.441 
0.682 
0.862 
0.983 
1.057 
1.095 
1.109 
1.106 
1.091 
1.069 
1.043 
1.015 
0.985 
0.955 
0.926 
0.898 
0.870 
0.844 
0.819 
0.795 
0.773 
0.751 
0.731 
0.712 
0.693 
0.676 
0.660 
0.644 
0.629 
0.615 
0.601 
0.588 
0.575 
0.563 
0.551 
0.540 
0.529 
0.519 

In Eqs. (18) Qi(l/@) is a Legendre function of the second 
kind and P = p/W. The sum in Eq. (12) can be carried 
out analytically to give 

4 7 I T O 2 G : 4 Z 5 

[ 7 ? 2 _ 1 ] l / 2 ( ^ + 1 ) 2 
0?2-*i7+t), (19) 

2.0 2.5 
|E|/mc2 

FIG. 1. Total cross section for single-photon 
annihilation for various elements. 

3.5 

Jaeger -Hulme 

2.0 
|E|/mc2 

FIG. 2. Comparison of the present work with 
previous calculations for Z = 82. 

with 7] = W/m, and rQ = a/'m = electron radius. This 
formula, which can of course be obtained by standard 
means, serves to check the procedure used here. 

A further check is provided by requiring that the 
Born approximation be obtained as Z —» 0. Quadrati-
cally extrapolating the numerical results for Z = l , 5, 
and 13 to Z—0 one recovers the Born-approximation 
result 

47rrn2rv4Z5 

(v2_1y/2(r}+1y 

0?2-l)1 / : 
-lnOrhO?2-!)1 '2)] , (20) 

accurately to three significant figures. 
As mentioned in the Introduction the numerical 

results for lead agree well, but not precisely, with the 
earlier results of Jaeger and Hulme. Figure 2 gives the 
Jaeger-Hulme result, and the Born result, as well as 
earlier results of Fermi and Uhlenbeck8 for comparison 
purposes. 
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